Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 7(1): txad044, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37216187

RESUMO

We evaluated the effects of a Bacillus-based direct-fed microbial (DFM) on total in vitro gas production, dry matter (DM), neutral detergent fiber (NDF), and starch disappearance of different feedstuffs and total mixed rations (TMR) in three different experiments. In experiment 1, six single fiber-based feedstuffs were evaluated: alfalfa hay, buffalo grass, beet pulp, eragrostis hay, oat hay, and smutsvinger grass. Experimental treatments were control (with no probiotic inoculation; CON) or incubation of a probiotic mixture containing Bacillus licheniformis and B. subtilis (3.2 × 109 CFU/g; DFM). The calculation of DFM dose under in vitro conditions was based on the assumption of a rumen capacity of 70 liter and the dose of 3 g of the DFM mixture/head/d (9.6 × 109 CFU). Total in vitro gas production, DM, and NDF disappearance were evaluated at 24- and 48 h posttreatment incubation. Mean treatment effects were observed at 24- and 48 h gas production (P < 0.0001), as DFM incubation increased in vitro gas production by 5.0% and 6.5%, respectively. For nutrient digestibility, mean DM digestibility was increased at 48 h (P = 0.05), whereas mean NDF digestibility increased at both timepoints by incubating DFM in vitro (P ≤ 0.02). In experiment 2, nine commercial dairy TMR were collected and evaluated for the same variables and treatments described in experiment 1, with the additional analysis of starch digestibility at 7 h post in vitro incubation. The only difference was the concentration of the DFM included, being representative for a dosage of 8.8 × 109 CFU/head/d. In vitro gas production was increased only at 48 h due to DFM incubation (P = 0.05), whereas DM and NDF digestibility were improved at 24 and 48 h (P ≤ 0.02). No treatment effects were observed on in vitro starch digestibility (P = 0.31). In experiment 3, a combined analysis of DM and NDF digestibility was performed by using quality values (NDF and crude protein or CP) of 16 substrates. Regardless of CP and NDF levels of the substrates, DFM improved in vitro 24 and 48 h DM and NDF digestibility (P ≤ 0.03). In summary, incubating a Bacillus-based DFM (B. licheniformis and B. subtilis; BOVACILLUS) improved mean in vitro gas production, DM, and NDF digestibility of single feedstuffs and commercial dairy TMR, highlighting the potential of this combination of Bacillus spp. to improve nutrient utilization, mainly fiber.

2.
Toxins (Basel) ; 15(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36828405

RESUMO

Aflatoxin B1 (AFB1) is a mycotoxin known to impair human and animal health. It is also believed to have a deleterious effect on ruminal nutrient digestibility under in vitro batch culture systems. The objective of this study was to evaluate the effects of increasing the dose of AFB1 on ruminal dry matter and nutrient digestibility, fermentation profile, and N flows using a dual-flow continuous culture system fed a diet formulated for lactating dairy cows. Eight fermenter vessels were used in a replicated 4 × 4 Latin square design with 10 d periods (7 d adaptation and 3 d sample collection). Treatments were randomly applied to fermenters on diet DM basis: (1) 0 µg of AFB1/kg of DM (Control); (2) 50 µg of AFB1/kg of DM (AF50); (3) 100 µg of AFB1/kg of DM (AF100); and (4) 150 µg of AFB1/kg of DM (AF150). Treatments did not affect nutrient digestibility, fermentation, and N flows. Aflatoxin B1 concentration in ruminal fluid increased with dose but decreased to undetectable levels after 4 h post-dosing. In conclusion, adding incremental doses of AFB1 did not affect ruminal fermentation, digestibility of nutrients, and N flows in a dual-flow continuous culture system fed diets formulated for lactating dairy cows.


Assuntos
Lactação , Leite , Animais , Bovinos , Feminino , Humanos , Aflatoxina B1/metabolismo , Ração Animal/análise , Dieta/veterinária , Fermentação , Nutrientes , Rúmen/metabolismo
3.
Transl Anim Sci ; 5(1): txaa222, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34142013

RESUMO

Two separate experiments were carried out to evaluate the effects of incremental doses of 10 exogenous endo-acting α-amylase and exo-acting glucoamylase; 1LAT (bacterial α-amylase), 2AK, 3AC, 4Cs4, 5Trga, 6Afuga, 7Fvga, and 10Tg (fungal α-amylases, glucoamylases, and α-glucosidase), 8Star and 9Syn (fungal amylase-mixtures; experiment 1) and three exogenous proteases; 11P14L, 12P7L, and 13P30L (bacterial proteases; experiment 2) on in vitro dry matter digestibility (IVDMD) and in vitro starch digestibility (IVSD) of mature dent corn grain using a batch culture system. Incremental doses of the exogenous enzymes (0, 0.25, 0.50, 0.75, and 1.00 mg/g of dried substrate) were applied directly to the substrate (0.5 g of ground corn, 4 mm) in sextuplicate (experiment 1) or quadruplicate (experiment 2) within F57 filter bags, which were incubated at 39 °C in buffered rumen fluid for 7 h. Rumen fluid was collected 2-3 h after the morning feeding from three lactating dairy cows and pooled. Cows were consuming a midlactation total mixed ration (TMR; 1.60 Mcal/kg DM and 15.4%; net energy of lactation and crude protein, respectively). Three independent runs were carried out for each experiment. Data were analyzed as a randomized complete block design using run as the blocking factor. Dose was used as a fixed factor while run was considered a random factor. Linear, quadratic, and cubic orthogonal contrasts were also tested. In experiment 1, enzymes 2AK, 3AC, and 10Tg did not increase (P > 0.10) IVDMD and IVSD, whereas 0.25 mg of enzymes 1LAT, 5Trga, and 8Star increased (P < 0.01) IVDMD by 23%, 47%, and 62% and IVSD by 35%, 41%, and 58%, respectively, compared with the control. Enzymes 4Cs4, 6Afuga, 7Fvga, and 9Syn linearly increased IVDMD and IVSD (P < 0.01). Greatest increases in IVDMD (82.9%) and IVSD (85.9%) resulted with 1 mg of 6Afuga compared to control. In experiment 2, the lowest dose of exogenous proteases 11P14L and 12P7L increased (P < 0.01) IVDMD by 98% and 87% and IVSD by 57% and 64%, respectively, whereas the highest dose of 13P30L increased (P = 0.02) IVDMD by 44.8% and IVSD by 30%, relative to the control. In conclusion, IVSD and IVDMD were increased by one α-amylase, certain glucoamylases, and all proteases tested, with the glucoamylase 6Afuga in experiment 1 and the neutral protease 12P7L in experiment 2, increasing IVDMD and IVSD to the greater extents. Future in vivo studies are required to validate these findings before these enzyme additives can be recommended for improving the digestibility of mature dent corn grain.

4.
J Dairy Sci ; 104(9): 9664-9675, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34099286

RESUMO

The objective of this study was to determine the effect of inoculation with Lactobacillus hilgardii with or without Lactobacillus buchneri on the fermentation, chemical composition, and aerobic stability of sorghum and corn silage after 2 ensiling durations. Sorghum forage was harvested at 27% dry matter (DM; experiment 1), and different corn hybrids were harvested at late (43.8% DM; experiment 2) or normal maturity (34% DM; experiment 3). All harvested forages were chopped and ensiled in quadruplicate in vacuum-sealed nylon-polyethylene bags (40 × 61 cm) for 30 and 90 d after treatment with (1) deionized water (uninoculated) or (2) L. buchneri (1.5 × 105 cfu/g of fresh weight; LB); (3) L. hilgardii (1.5 × 105 cfu/g of fresh weight; LH); or (4) L. buchneri and L. hilgardii (1.5 × 105 cfu/g of fresh weight of each inoculant). Data for each experiment were analyzed separately accounting for the 2 × 2 × 2 factorial treatment arrangement. Inoculating sorghum forage with LB or LH separately increased acetate and 1,2 propanediol concentration, tended to increase DM loss, reduced lactate concentration and the lactate-to-acetate ratio, and increased aerobic stability after 90 but not after 30 d of ensiling. Inoculating late-harvested corn silage with LB or LH separately increased and decreased DM loss, respectively, increased 1,2 propanediol concentration, reduced lactate-to-acetate ratio and yeast counts but did not affect aerobic stability. Inoculating normal-harvested corn silage with LH reduced DM loss and increased 1,2 propanediol concentration and yeast counts; LB reduced lactate concentration, lactate-to-acetate ratio, and total acids. Either inoculant alone increased aerobic stability after 30 or 90 d. The main benefit of combining LB with LH was prevention of increases in DM losses by LH or LB separately. No improvement in aerobic stability resulted from applying LH instead of LB separately or from combining them. Application of LB or LH separately improved aerobic stability of sorghum silage after 90 d and normal-harvested corn silage after 30 or 90 d but did not affect that of late-harvested corn silage.


Assuntos
Silagem , Sorghum , Aerobiose , Animais , Fermentação , Lactobacillus , Valor Nutritivo , Saccharomyces cerevisiae , Silagem/análise , Zea mays
5.
J Dairy Sci ; 104(7): 7653-7670, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33814134

RESUMO

A meta-analysis of 158 peer-reviewed articles was conducted to examine effects of inoculation with Lactobacillus buchneri (LB)-based inoculants (LBB) that did or did not include homolactic or obligate heterolactic bacteria on silage fermentation and aerobic stability. A complementary meta-analysis of 12 articles examined LBB inoculation effects on dairy cow performance. Raw mean differences between inoculant and control treatment means weighted by inverse variance were compared with a hierarchical effects model that included robust variance estimation. Meta-regression and subgrouping analysis were used to identify effects of covariates including forage type, application rate (≤104, 105, 106, or ≥ 107 cfu/g as fed), bacteria type (LB vs. LB plus other bacteria), enzyme inclusion, ensiling duration, and silo type (laboratory or farm scale). Inoculation with LBB increased acetate (62%), 1, 2 propanediol (364%) and propionate (30%) concentration and aerobic stability (73.8%) and reduced lactate concentration (7.2%), yeast counts (7-fold) and mold counts (3-fold). Feeding inoculated silage did not affect milk yield, dry matter intake, and feed efficiency in lactating dairy cows. However, forage type, inoculant composition, and dose effects on silage quality measures were evident. Inoculation with LBB increased aerobic stability of all silages except tropical grasses. Adding obligate homolactic or facultative heterolactic bacteria to LB prevented the small increase in DM losses caused by LB alone. The 105 and 106 cfu/g rates were most effective at minimizing DM losses while aerobic stability was only increased with 105, 106, and ≥ 107 cfu/g rates. Inoculation with LBB increased acetate concentration, reduced yeast counts and improved aerobic stability but did not improve dairy cow performance.


Assuntos
Lactação , Silagem , Aerobiose , Animais , Bovinos , Feminino , Fermentação , Lactobacillus , Silagem/análise , Zea mays
6.
PLoS One ; 14(11): e0224381, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31689330

RESUMO

Bacterial expansin-like proteins have synergistically increased cellulose hydrolysis by cellulolytic enzymes during the initial stages of biofuel production, but they have not been tested on livestock feeds. The objectives of this study were to: isolate and express an expansin-like protein (BsEXLX1), to verify its disruptive activity (expansion) on cotton fibers by immunodetection (Experiment 1), and to determine the effect of dose, pH and temperature for BsEXLX1 and cellulase to synergistically hydrolyze filter paper (FP) and carboxymethyl cellulose (CMC) under laboratory (Experiment 2) and simulated ruminal (Experiment 3) conditions. In addition, we determined the ability of BsEXLX1 to synergistically increase hydrolysis of corn and bermudagrass silages by an exogenous fibrolytic enzyme (EFE) (Experiment 4) and how different doses of BsEXLX1 and EFE affect the gas production (GP), in vitro digestibility and fermentation of a diet for dairy cows (Experiment 5). In Experiment 1, immunofluorescence-based examination of cotton microfiber treated without or with recombinant expansin-like protein expressed from Bacillus subtilis (BsEXLX1) increased the surface area by > 100% compared to the untreated control. In Experiment 2, adding BsEXLX1 (100 µg/g FP) to cellulase (0.0148 FPU) increased release of reducing sugars compared to cellulase alone by more than 40% (P < 0.01) at optimal pH (4.0) and temperature (50°C) after 24 h. In Experiment 3 and 4, adding BsEXLX1 to cellulase or EFE, synergistically increased release of reducing sugars from FP, corn and bermudagrass silages under simulated ruminal conditions (pH 6.0, 39°C). In Experiment 5, increasing the concentration of BsEXLX1 linearly increased (P < 0.01) GP from fermentation of a diet for dairy cows by up to 17.8%. Synergistic effects between BsEXLX1 and EFE increased in vitro NDF digestibility of the diet by 23.3% compared to the control. In vitro digestibility of hemicellulose and butyrate concentration were linearly increased by BsEXLX1 compared to the control. This study demonstrated that BsEXLX1 can improve the efficacy of cellulase and EFE at hydrolyzing pure substrates and dairy cow feeds, respectively.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas de Membrana/metabolismo , Silagem , Proteínas de Bactérias/isolamento & purificação , Celulase/metabolismo , Celulose/metabolismo , Cynodon/citologia , Cynodon/metabolismo , Fermentação , Hidrólise , Proteínas de Membrana/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Zea mays/citologia , Zea mays/metabolismo
7.
Asian-Australas J Anim Sci ; 31(2): 208-217, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28728358

RESUMO

OBJECTIVE: Examine the effects of supplementing bahiagrass hay (BG) with potentially anthelmintic quantities of hays of perennial peanut (PEA) or sericea lespedeza (LES) or seeds of velvet bean (Mucuna pruriens L.; MUC) or papaya (PAP) on the intake and nutritive value (Experiment 1), and the performance and parasite burden (Experiment 2) of goats. METHODS: In Experiment 1, 38 male goats (27.4±5.7 kg body weight) were randomly assigned to each of 5 treatments: i) BG alone and BG plus; ii) PEA; iii) LES; iv) MUC; and v) PAP. Goats were fed for ad libitum consumption and adapted to the diets for 14 d followed by 7 d of measurement. The PEA, LES, MUC (50%, 50%, and 10% of the diet dry matter [DM], respectively), and PAP (forced-fed at 10 g/d) were fed at rates that would elicit anthelmintic effects. In Experiment 2, goats remained in the same treatments but were allocated to 15 pens (3 pens per treatment) from d 22 to 63. All goats were infected with parasites by grazing an infected bahiagrass pasture from 0800 to 1500 h daily and then returned to the pens. RESULTS: Dry matter intake tended to be greater in goats fed PEA and LES than those fed BG (757 and 745 vs 612 g/d, respectively). Digestibility of DM (59.5% vs 54.9%) and organic matter (60.8% vs 56.0%) were greater in goats fed MUC vs BG, respectively. In Experiment 2, feeding PAP, LES, and PEA to goats reduced nematode fecal egg counts by 72%, 52%, and 32%, reduced abomasal adult worm counts by 78%, 52%, and 42%, and decreased plasma haptoglobin concentrations by 42%, 40%, and 45% relative to feeding BG alone, respectively. CONCLUSION: Supplementation with PEA, LES, and PAP decreased the parasite burden of goats but did not increase their performance. PAP was the most effective anthelmintic supplement.

8.
J Dairy Sci ; 100(6): 4513-4527, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28365114

RESUMO

The aim of this study was to use meta-analytical methods to estimate effects of adding exogenous fibrolytic enzymes (EFE) to dairy cow diets on their performance and to determine which factors affect the response. Fifteen studies with 17 experiments and 36 observations met the study selection criteria for inclusion in the meta-analysis. The effects were compared by using random-effect models to examine the raw mean difference (RMD) and standardized mean difference between EFE and control treatments after both were weighted with the inverse of the study variances. Heterogeneity sources evaluated by meta-regression included experimental duration, EFE type and application rate, form (liquid or solid), and method (application to the forage, concentrate, or total mixed ration). Only the cellulase-xylanase (C-X) enzymes had a substantial number of observations (n = 13 studies). Application of EFE, overall, did not affect dry matter intake, feed efficiency but tended to increase total-tract dry matter digestibility and neutral detergent fiber digestibility (NDFD) by relatively small amounts (1.36 and 2.30%, respectively, or <0.31 standard deviation units). Application of EFE increased yields of milk (0.83 kg/d), 3.5% fat-corrected milk (0.55 kg/d), milk protein (0.03 kg/d), and milk lactose (0.05 kg/d) by moderate to small amounts (<0.30 standard deviation units). Low heterogeneity (I 2 statistic <25%) was present for yields and concentrations of milk fat and protein and lactose yield. Moderate heterogeneity (I 2 = 25 to 50%) was detected for dry matter intake, milk yield, 3.5% fat-corrected milk, and feed efficiency (kg of milk/kg of dry matter intake), whereas high heterogeneity (I 2 > 50%) was detected for total-tract dry matter digestibility and NDFD. Milk production responses were higher for the C-X enzymes (RMD = 1.04 kg/d; 95% confidence interval: 0.33 to 1.74), but were still only moderate, about 0.35 standardized mean difference. A 24% numerical increase in the RMD resulting from examining only C-X enzymes instead of all enzymes (RMD = 1.04 vs. 0.83 kg/d) suggests that had more studies met the inclusion criteria, the C-X enzymes would have statistically increased the milk response relative to that for all enzymes. Increasing the EFE application rate had no effect on performance measures. Application of EFE to the total mixed ration improved only milk protein concentration, and application to the forage or concentrate had no effect. Applying EFE tended to increase dry matter digestibility and NDFD and increased milk yield by relatively small amounts, reflecting the variable response among EFE types.


Assuntos
Ração Animal , Fibras na Dieta/metabolismo , Suplementos Nutricionais , Digestão/efeitos dos fármacos , Enzimas/administração & dosagem , Leite/metabolismo , Animais , Bovinos , Celulase/administração & dosagem , Indústria de Laticínios , Dieta , Digestão/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Endo-1,4-beta-Xilanases/administração & dosagem , Feminino , Glicolipídeos/metabolismo , Glicoproteínas/efeitos dos fármacos , Glicoproteínas/metabolismo , Lactação , Gotículas Lipídicas , Proteínas do Leite/metabolismo
9.
J Dairy Sci ; 100(6): 4587-4603, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28342607

RESUMO

Forages are usually inoculated with homofermentative and facultative heterofermentative lactic acid bacteria (LAB) to enhance lactic acid fermentation of forages, but effects of such inoculants on silage quality and the performance of dairy cows are unclear. Therefore, we conducted a meta-analysis to examine the effects of LAB inoculation on silage quality and preservation and the performance of dairy cows. A second objective was to examine the factors affecting the response to silage inoculation with LAB. The studies that met the selection criteria included 130 articles that examined the effects of LAB inoculation on silage quality and 31 articles that investigated dairy cow performance responses. The magnitude of the effect (effect size) was evaluated using raw mean differences (RMD) between inoculated and uninoculated treatments. Heterogeneity was explored by meta-regression and subgroup analysis using forage type, LAB species, LAB application rate, and silo scale (laboratory or farm-scale) as covariates for the silage quality response and forage type, LAB species, diet type [total mixed ration (TMR) or non-TMR], and the level of milk yield of the control cows as covariates for the performance responses. Inoculation with LAB (≥105 cfu/g as fed) markedly increased silage fermentation and dry matter recovery in temperate and tropical grasses, alfalfa, and other legumes. However, inoculation did not improve the fermentation of corn, sorghum, or sugarcane silages. Inoculation with LAB reduced clostridia and mold growth, butyric acid production, and ammonia-nitrogen in all silages, but it had no effect on aerobic stability. Silage inoculation (≥105 cfu/g as fed) increased milk yield and the response had low heterogeneity. However, inoculation had no effect on diet digestibility and feed efficiency. Inoculation with LAB improved the fermentation of grass and legume silages and the performance of dairy cows but did not affect the fermentation of corn, sorghum, and sugar cane silages or the aerobic stability of any silage. Further research is needed to elucidate how silage inoculated with homofermentative and facultative heterofermentative LAB improves the performance of dairy cows.


Assuntos
Fermentação , Lactação , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Silagem/microbiologia , Aerobiose , Animais , Bovinos , Digestão , Fabaceae/metabolismo , Feminino , Medicago sativa/metabolismo , Poaceae/metabolismo , Saccharum/metabolismo , Sorghum/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...